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Numerical schemes for the determination of stationary axisymmetric toroidal equilibria 
appropriate for modeling real experimental devices are given. Iterative schemes are used 
to solve the elliptic nonlinear partial differential equation for the poloidal flux function Y. 
The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilib- 
rium problem where external current-carrying toroidal coils support the plasma column, 
but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current 
distribution is given by specifying the pressure and either the poloidal current or the safety 
factor profiles as functions of Y. Examples of the application of the codes to tokamak 
design at PPPL are given. 

I. INTRODUCTION 

The determination of MHD equilibrium configurations is an integral part of the 
problem of designing plasma confinement devices and interpreting their operational 
results. Even in tokamaks with circular plasma cross section, finite pressure effects 
make the magnetic surfaces nonconcentric so that full solution of the partial differen- 
tial equation is important [l, 21. Interest [3, 41 in tokamaks with noncircular cross 
sections makes these calculations even more essential. Detailed parametric studies of 
high-/3 tokamak properties [5] may determine the criteria for design of the next 
generation of tokamak devices. Equilibrium calculations play a major role in reactor 
studies where a knowledge of the plasma configuration (produced, for example, by 
divertors) provides the basic framework for detailed system design. 

Very little can be done on this problem analytically. A few exact equilibria [6] 
have been obtained in simple closed form, but they are usually associated with 
nearly constant toroidal current inside the plasma and have little shear. More compli- 
cated analytical solutions [7] are only of limited value in detailed tokamak design. 
Furthermore, analytic solutions give little information for real systems where the 
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currents in coils outside the plasma must be specified. Numerical calculations are 
ideally suited to these design problems. 

Two particularly good discussions of the equilibrium problem and its solution 
have recently appeared. MacNamara [8] briefly reviews tokamak equilibrium calcula- 
tions and emphasizes the computation of 30 equilibria in systems with nonisotropic 
pressure. Lackner [9] reviews axisymmetric toroidal calculations with particular 
emphasis on iterative schemes for the nonlinearities and gives an excellent discussion 
of the treatment of plasma shaping. Our intention is to describe the equilibrium 
section of the Princeton Equilibrium, Stability, and Transport package (PEST) [lo] 
for tokamak calculations, to describe some applications of the code as it has been 
used for tokamak design at Princeton, and to present recent extensions which make it 
possible to calculate equilibria with given safety factor profiles or asymmetric cross 
sections. 

The equilibrium problem in a toroidal axisymmetric system consists of solving an 
elliptic partial differential equation for the poloidal flux function Y(X, Z), subject to 
proper boundary conditions outside the plasma. The typical geometry is shown in 
Fig. 1. We use a Green’s function formulation to determine Dirichlet boundary condi- 
tions on the edge of a computational domain and finite difference methods to solve 
the partial differential equation. Since the problem is highly nonlinear, it is necessary 
to employ iterative procedures. 

FIG. 1. Computational domain g. 

The problem is most easily solved when we prescribe the pressure p(Y) and a 
toroidal field function g(Y) such that Bb = RB,,g(Y)/X with B,, the externally imposed 
vacuum toroidal field at an arbitrary radius R. The cylindrical coordinates (X, 4, Z) 
are shown in Fig. I. For completeness, we describe the program using this prescription 
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in the next section. In Section III we describe the modifications that are necessary 
when we prescribe the pressure and the safety factor. This is a useful way to formulate 
the problem since the safety factor is determined experimentally and used in conceptual 
designs. Such a formulation has been described by Grad et al. [l 11. 

Sometimes one prefers to prescribe the shape of the plasma boundary rather than 
the specific coil configuration. We describe in Section IV how this can be done. If 
the equilibrium does not possess mirror symmetry with respect to the midplane of the 
torus, special care must be taken to achieve convergence. This problem can be solved 
by using some auxiliary “feedback” coils as described in Section V [12]. 

A partial understanding of the stability properties of the system can be obtained by 
evaluating the functions D, and D, , associated, with stability criteria [I 31 for localized 
ideal and resistive interchange modes. This involves evaluation of a set of surface 
integrals on the magnetic surfaces. Thus, although stability properties are outside 
the scope of this paper, local stability criteria are computationally part of the equili- 
brium. We treat this in Section VI. In Section VII we describe some calculations that 
demonstrate that the code can represent analytic configurations and describe sensitive 
equilibrium functions. This gives some credence to its predictions. 

Finally, to show the capability of the code, application is made to several tokamak 
configurations in Section VIII. 

II. SOLUTION PROCEDURE WITH p(Y) AND g(U) SPECIFIED 

A simple description of a tokamak configuration is given by the A4HD equations 
[14] for force balance, 

Vp = J x B, (1) 

J-VxB, (2) 

V.B =O. (3) 

In this model, B and J lie on the nested toroidal surfaces of constant pressure. Since 
the configuration is axisymmetric, it is convenient to write 

B = & V+ x Vy + RB,,g 04 

where Y = (1/27~) jB . V@ dT measures the poloidal magnetic flux between the axis 
of symmetry and the magnetic surface of interest. It is related to the C$ component of 
the magnetic vector potential A through 

Y = 27rXA,. (5) 

Here C$ is the ignorable coordinate, and 0 is an angle coordinate which increases by 
2n in going once the short way around the torus. Since Eq. (1) implies that B . Vp = 0, 
we have p = p(y> only. 
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The equilibrium equation, obtained from Eqs. (l), (2), and (4), is 

a i aY av 
XZi?TS+ azz __ = 2nXJ6, 

with 

J4 = -2~ c 4 XdY+ 
R”B;” dgg” ~- ~ 

1 2X dY (7) 

When the plasma is surrounded by a vacuum region, Jb is nonzero only in the interior 
of the plasma where Y < Y, , and p(Y) = 0 for Y 3 Y, . The self-consistent deter- 
mination of this plasma-vacuum interface, Y = Y, , is an important part of the solu- 
tion. lt introduces a fundamental nonlinearity into the problem, even if p(Y) and 
g(Y) are chosen to depend linearly on Y. The physical boundary conditions for Eq. (6) 
are that Y be constant on some contour if the system is surrounded by a conducting 
wall, or that Y vanishes at X = 0 and co. 

The iterative procedure employed to solve the problem is illustrated schematically 
in Fig. 2. It consists basically of two nested loops; an outer loop (labeled m) in which 
approximate Dirichlet boundary conditions for Y are determined for the computa- 
tional domain L???‘, and an inner loop (labeled n) which iterates over the nonlinear 
“source” term, XJ, , and, hence, converges to a solution of Eq. (6) with fixed boundary 
values on S%?. 

Slep A. 
current 

lnil~alirotion 

I 
Step C. step D. step E. 

1------l 
1 

Update - Compute - Determine I MOP I 

J+ New $ 94 I--; Surfaces I 
I 

1 
---T--- 

I , 
I , 
I I 

Step F 1 
Convergence 

I 

Y’,, i 

I 
I 

I 
,--L--, 

-- I DetermIne I 
----- - 

I I YV(+hndf($4 ’ 
I l--,--i 

I 
I 
I 

FIG. 2. Code flow chart. The dashed section is inserted when p(U) and q(Y), rather than p(y) 
and g(Y) are specified. 

The iteration procedure is conveniently divided into the following steps: 

Step A : Initialization 
Choosing a good initial approximation to the solution is an important aspect of the 

problem, both with regard to minimization of the computer time required and because 
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multiple (bifurcated) equilibria sometimes exist with this formulation of the problem. 
Such alternate solutions, although they satisfy the same boundary conditions, will 
usually differ with respect to some equilibrium property such as the location of the 
magnetic axis or the value of Yr . By careful tailoring of the initial conditions, the 
iteration procedure can be directed towards finding the equilibrium of interest. 

In the usual finite difference notation (subscripts i, j represent grid points, super- 
scripts m, n represent iteration number labels) we write the initial current approxima- 
tion as 

if r2 < D” 
$l:O) = 1,) 

if r2 > D2, 

where r2 = (Xi - X$ + (Zj - Z,)2 and X, , Z, , and D define input parameters 
specifying the center and radius of the initial current distribution. The factor c is 
adjusted to fix the given total toroidal current. Alternatively, Yj:;‘) can be specified 
as the initial conditions. 

Step B: Computation of Boundary Flux Values Yi”) 

We divide Y on the boundary %? of the computational domain -2 into its two 
contributing parts 

y(m) = ycoi1s G.0) 
b b -t ‘u, , (6) E a92 (8) 

where Ypl’ represents the contribution from the currents flowing in external toroidal 
coils, and Yirnyo) represents the contributions from the plasma currents using the 
latest approximation to Jm as the calculation proceeds. 

Both terms are computed using the appropriate Green’s function for a toroidal 
current source [ 151; 

G(X, z 1 x’, z’) = (2.rrK)-1(xx’)‘/2[(2 - K2)K(K2) - 2E(K2)] (9) 

where 

K2 = 4x~%-‘/[(x + x’)2 + (z - z’)‘], 

and K(K2) and E(K2) are the usual elliptic integrals. Thus 

ylhcoils = 277 c I,G(X,, Zb / XL , z,), 

yh*o) 
b = 2~7 dxdz c 1 J&“G(X,, z,, 1 xi, zj). 

i=l,I j=l,J 

The contribution from the external coils in Eq. (8) is computed only at the beginning 
of the calculation. Likewise, the matrices of the Green’s functions of Eq. (9) need 
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only be evaluated initially and stored for use later in the computation. Updating 
of ?Pi”’ is then reduced to a simple matrix multiplication. 

Also, we have implemented the Lackner and Von Hagenow formulation, which 
uses Green’s theorem, to replace the computation of Yi.m,o) of Eq. (10) by an integral 
over the boundary of the computational mesh [9]; 

(11) 

Here u is the solution of Eq. (6) with tl = 0 on M’, which is obtained in Step D. This 
can reduce machine time significantly, especially when large meshes are used. 

It is sometimes desirable to describe the external vacuum field in a more abstract 
form. An approach which has been used successfully (see Section VIII, C) consists of 
employing the first few terms of a multipole moment expansion for the vacuum 
external flux: we take 

yhcoi’s = 25-r Y. + f BD(X” - R2) + & 
t 

B,[4X2Z2 - (X2 - R2)2] 

+ -& [8X2Z4 - 12(X2 - R2) X2Z2 + (X2 - R2)3]) (12) 

with 

Y. = (B, + $B, + ;BH) R2/2. 

The external vacuum field is thus characterized by three parameters; BD , B, , and 
B,-the dipole, quadrupole, and hexapole moments, respectively. In practice it 
seems reasonable to neglect higher order moments since to adjust these experimentally 
would require the installation of poloidal field coils close to the plasma surface. In the 
calculation, we then use Eq. (12) in place of Eq. (10) to determine the contribution 
to the boundary flux from the external vacuum field. 

Step C: Updating the Current Distribution J4 

As the iteration proceeds, the latest values of Yj:‘“’ are used to compute the values 
of the inhomogeneous right-hand side of Eq. (6) using Eq. (7). Thus, at each grid 
point lying inside the closed contour Yl(m,n), we take 

(13) 

where the notation used for the quantities in parentheses indicates evaluation of 
dp/dY and dg2/dY using the latest known values Y$vn). The simplest forms we take 
for p and g are 

P = POYlsa, (14) 
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and 

where 

JOHNSON ET AL. 

g = 1 - y!PsB, (15) 

Y, = (YL - Y)/(YL - Y,). 

Here p,, , the plasma pressure at the magnetic axis, 01, and p are the input parameters, 
and Ya is the value of Y at the magnetic axis, which changes during the iteration, as 
does Y, . The value of y is adjusted at each step of the calculation to keep the total 
toroidal current I constant [16]. Evaluating the integral over the plasma cross section 
in I = SPJm dS by quadratures using Eqs. (13) through (15) leads to a simple quadratic 
equation for y. We always take the root with smallest absolute value. 

This step is bypassed on the first cycle through the inner loop. The determination of 
Y, in Eqs. (14) and (15) is given in Step E below. 

Step D: Solution of the Finite Difference Equations 

We use centered difference equations for 
Eq. (6)> 

representing the partial derivatives in 

with Y!~T~) = Yirn’ on the boundaries {i, j} E i?%?. These equations are solved using 
double yyclic reduction [I 71 in a form only slightly different from the usual application 
to Poisson’s equation in cylindrical coordinates [I 81. 

Step E: Computing Y on the Plasma-Vacuum Interface 

To fully determine p(Y) and g(Y) in Eqs. (14) and (15) or a similar prescription, the 
current value of Yy, must be determined at each iteration. This is accomplished by 
introducing material or magnetic limiters. 

Material limiters are specified geometrically as straight line sections, and the plasma- 
vacuum interface is defined to be the minimum Y = constant contour which makes 
contact with any limiter. From a practical point of view, it is preferable to limit the 
solution with horizontal (rather than vertical) limiters unless some special procedure is 
used to fix the position of the magnetic axis during the iterations. Vertical limiters 
couple the iterative changes in major and minor plasma radius, and this can lead to 
nonconvergence [19]. With horizontal limiters, a large change in the radial position 
of the plasma column (as may occur with a bad initial guess) can be accomodated 
without changing the minor radius. 

Locating a magnetic limiter or separatrix, if one exists, is more involved. It is 
accomplished by searching for the Y values associated with stagnation (or saddle) 
points in Y(x, 2) [20]. A cubic Lagrange interpolating polynomial is used to define Y 
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between mesh points. The minimum Y over all such stagnation points can be taken as 
the limiting flux surface. Frequently, the value for the plasma-vacuum interface, 
YL , is set slightly smaller than this value so that the separatrix surface lies in the 
vacuum region. 

Srrp F: Convergence of the Inner Loop 

To test for convergence of the inner iteration loop, we compute 

A(“.lL) = 11 y (nl,?l) _ yJy’mJ-l’l~l/(y~ _ y<,) (17) 

and compare it against the relative error in the (m - l)at boundary outer iteration 
B(+l), discussed in Step G. If 

/I’m-n) < O.lP-11, 

then the inner loop convergence test has been passed. The rationale for comparing 
against the boundary error instead of a fixed number is to avoid wasting computer 
time by iterating in one part of the calculation to a very fine tolerance while a substan- 
tial error exists in an outer iteration loop. 

Srep G: Convergence of the Outer Loop 

The boundary values are considered to have converged when 

where Q, is an input tolerance (usually 1O-4). Also computed at this stage is the quan- 
tity P) used in Step F, which is the simple average over all the boundary grid points 
of the left-hand side of Eq. (18). 

The effectiveness of these numerical procedures is, of course, problem dependent. 
Over the five to six years during which the code has been applied extensively to many 
different tokamak configurations, it has been modified frequently to handle special 
cases, and the present version, which incorporates the features of this section, is 
capable of handling a wide variety of applications. Typical calculations, using a 
65 x 65 mesh, involve the order of 5 to 30 inner and outer iterations for 4 digit 
convergence. A complete calculation, including local stability calculations (see 
Section VI), usually can be carried out in 30 seconds on a CDC 7600 computer, 
provided a sensible initial approximation is used. Frequently, production calculations 
can be achieved in half this time. 

III. SOLUTION PROCEDURE WITH p(Y) AND q(Y) SPECIFIED 

In typical tokamaks g(Y) does not vary much inside the plasma and is not amenable 
to measurement. We describe a modification in which the safety factor q(Y), a function 
that is readily inferred from experimental measurements and used in most reactor 
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design considerations, is prescribed. Further, it is the appropriate quantity to specify 
when computing a series of equilibria from flux conserving principles [21, 221. 

We find it convenient to work in a #, 0, #I coordinate system [IO] in which the 
magnetic field lines appear straight. Thus, we introduce a new flux label # = 
(J~T/X~/J~ dT/Xz) and a 0 coordinate, such that 

and 

where 

f = (V# x V@ . 0+)-l = vX2/27rR (20) 

v = (R/24 [ dT/X2. 

Then, 

4($) = vg(W4-($). (21) 

Integrating Eq. (7) over a magnetic surface gives a differential constraint [ 1 l] which 
the equilibrium solution must satisfy on each magnetic surface, 

2rR2g(#) g’(#> = - & V’(v4 P’(Yv - .f(a4~>f(~)l’~ (22) 
0 

where the prime denotes differentiation with respect to I/. Here V(#) is the volume 
inside the surface and 

Using Eq. (21) to eliminate g(#) from Eq. (22) gives a first-order differential equation 
for f(4) in terms of p(Y) and q(Y), 

f,(+) = _ (27~RvV‘/BO) dp/d!P + VYK’ $ (2~r)~ R2f2qBo dqidlu ____ 
(2?T)3 R2q2 + V’K 

> (23) 

with the boundary condition 

f(l) = v/2%7(1). 

Similarly, using Eq. (22) to eliminate g from Eq. (7) gives 

(24) 

(25) 

This form is particularly instructive since it clearly separates the Pfirsch-Schhiter 
current [23] (first term) from the Ohmic heating current (second term). Since the net 
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current inside a surface is implicitly determined by the specification of the safety 
factor q, the total discharge current I = &(u/27rR)~(l)f(l) must be allowed to change 
during the course of the iteration, and the position of the magnetic axis will move. 
We prevent such motion by scaling the current in the vertical field coils. We also 
adjust the current in the divertor coils to position the separatrices. 

The incorporation of specified safety factor profiles within the framework of 
Fig. 2 is straightforward. In Step C we use Eq. (25) rather than Eq. (7). The latest 
approximation for f must be renormalized at each iteration in Step E to maintain 
!Pr - Ya fixed. After exiting from the inner loop in Step F, we call a mapping routine 
[IO] to determine u, V(#), and K(#). We then solve the coupled Eqs. (19) and (23) 
iteratively, using a Runge-Kutta technique, to determine ‘Y(4) and f(#), In practice 
f(#) is under-relaxed to damp oscillations in the iteration procedure. If the position 
of the magnetic axis or the location of a separatrix has changed significantly, we modify 
the current in the vertical field coils or the divertor coils after this step. In the conver- 
gence tests of Step G, we test that the q(Y) returned by the mapping procedure agrees 
with the initial specification. 

All of the surface functions Y(#), f(#), q(#), K(#), invariably converge much faster 
than the solution itself. A typical free-boundary calculation requires 50 to 100 outer 
iterations taking about 7 minutes on a CDC 7600. The large increase in time over 
cases with g(Y) specified is due to the addition of the mapping procedure and the 
need for more outer loops to find the appropriate external field. Fixing the position 
and the shape of the plasma boundary can reduce the computing time by a factor of 
3 to 5 by providing rapid convergence of the outer loop. 

IV. SOLUTIONS WITH PLASMA BOUNDARY SPECIFIED 

For many purposes it is useful to prescribe the shape of the plasma by making 
Y(X, Z) a constant, Y, , on a specified surface. The implementation of such a boundary 
condition has been handled directly using finite difference equations [24]. Since in 
practice the plasma is shaped by external fields produced by currents flowing in 
external conductors, it is of considerable interest to determine the positions and the 
currents in the coils as part of the solution. We describe a simple extension of the 
procedure of Section II which allows us to do this rapidly by imposing boundary 
conditions on the edge of a rectangular domain and employing double cyclic reduction 
to solve Eq. (16). 

We define the plasma surface by a set of M points Xj , Zj which are usually distri- 
buted with equal increments of arc length. At each step of the iteration, we compute 
Ykm)(Xj , Z,), the values of Y at each of these points. In general Yim)(Xj , ZJ will not 
equal the desired solution Ys . We modify the external field to produce an additional 
contribution on the plasma boundary 

Y-%t(Xj ) ZJ = Y, - Yy(& ) ZJ. 



222 JOHNSON ET AL. 

To determine the necessary external currents, we solve the overdetermined problem 
obtained by finding the least square error in the poloidal flux at the M points, Xj , 
Zj produced by currents in N coils at set locations Xi , Zi with A4 > N. Since the flux 
at Xj , Zj due to the current Ii in the coil at Xi , Zi is Yi(Xj , Zj) = G(X, , Zi 1 Xj , Z,)& , 
we minimize 

’ = f 1 5 yi(xj ) zj) - ytXt(Xj 2 Zj)/’ + YL f Iii2 + XL c Ii y (27) 
j=l i=l i=l i=l 

with respect to Ii , Ys , and X. The regularization parameter y [8, 91 is introduced to 
stabilize the solution procedure against large oscillations in Zi . The parameter L 
provides a normalization between the terms. The last term can be used to constrain 
the total current in all the coils to zero with h an undetermined Lagrange multiplier. 
If we do not require this constraint, we can set h = 0. Similarly, we can specify 
ys > reducing the number of unknowns and variational equations by one. We invert 
the matrix equation which minimizes Eq. (27) to obtain Ii , Ys, and h. In practice it is 
necessary to iterate this step to reduce the second term in Eq. (27). This is achieved 
by using a sequence of values for y, 

Ykfl = Yk(%lEkY, (28) 

where 

Ek = 11 ykd& , zj) - [yys - yp,“(&, zj)]lI/l Y, - Ya /. 

The iteration is stopped when ck < .+, . 
To implement this, we use the standard free-boundary code, incorporating Step B 

into the inner loop and calculating the Ii’s in Step C each time the flux, and thus the 
plasma current, is updated. The procedure converges rapidly so that we can get 
solutions with deviations of Y from Y’, on the surface of order 1O-4 in less than ten 
iterations. 

An advantage of this approach is that it yields information concerning the currents 
in the coils which are necessary to support an equilibrium with a given shape as part 
of the determination of the configuration. In some sense it is an implementation of the 
virtual casing method [25, 261 for determining these currents. 

V. NON-Z-SYMMETRIC EQUILIBRIA 

All present tokamaks have been designed and built with mirror symmetry about 
the Z = 0 plane. It would be useful to investigate the properties of a device in which 
this constraint is relaxed. For example, if the Poloidal Divertor Experiment (PDX) 
were modified to have only one divertor, the volume of plasma that could be contained 
inside the existing vacuum vessel could approximately be doubled. Several modifica- 
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tions of the code are necessary for the computation of free surface equilibria which 
are not symmetric about the plane 2 = 0. 

Determination of the location of the magnetic axis and the positions of the separa- 
trices in Step E of Fig. 2 requires a more general procedure than that discussed in 
Section II. Each grid point of interest must be tested against its nearest neighbors 
to locate the regions where 1 VY I2 is a local minimum. At these points, we compute 
the centered difference approximation to 

S(& ) &) = (G)(g) - (gg. (29) 

If S > 0, a magnetic axis exists in the vicinity; if S < 0, there is a nearby separatrix. 
The location of the axis or separatrix is determined by quadratic interpolation. 

A more significant modification to the standard procedure of Fig. 2 is needed to 
prevent the magnetic axis from drifting off in the 2 direction as the iterations proceed. 
This problem is avoided in symmetric calculations where the magnetic axis is con- 
strained to lie on 2 = 0. It can be solved by incorporating some additional externa, 
coils which provide a field in the plasma region that is essentially horizontal. If, in the 
course of iterating, the magnetic axis tends to drift from a preselected vertical position, 
the currents in these coils are adjusted and new boundary values !Pb calculated 
(Step B of Fig. 2). In practice, the feedback algorithm 

Azmil = -SgIl(Zcoil)[Cl(Z’“’ - Z,) + C2(Zcn) - Z’“-l’)]Z, (30) 

where ZG is the desired vertical position of the magnetic axis, Ztn) and Z+l) are the 
current and old positions, and Z is the total plasma current, has proven effective. The 
values of the constants C, and C, are chosen by trial and error. This procedure has 
the attribute that it not only determines interesting equilibria, but it provides informa- 
tion concerning the locations and the magnitudes of feedback currents that would be 
required to maintain the axis at any desired location. 

This use of feedback coils bears some resemblance to the procedure described in 
Section IV where additional external coils are employed to shape the plasma surface. 
Indeed, we have used the techniques of that section to compute arbitrarily shaped 
non-Z-symmetric equilibria. In this case the position of the magnetic axis can not be 
prescribed. 

VI. CALCULATION OF LOCAL STABILITY CRITERIA 

Having calculated an equilibrium, one is interested in its properties. One such 
property, the spectrum of small amplitude oscillations, including instabilities, can be 
calculated by a finite element procedure as discussed elsewhere [27]. However, some 
local criteria can be evaluated from integrals over the flux surfaces as part of the equi- 
librium calculation. 

581/32/z-6 
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Those localized stability criteria, for stability against interchange modes that exist 
in an ideal model of the plasma [28, 291 and for modes whose existence depends on 
resistivity [30], have been derived analytically on the assumption that the modes are 
strongly localized near some particular magnetic surface, the singular surface. This 
localization makes analysis feasible, but makes finite element calculations much more 
difficult. Thus, the numerically evaluated analytic criteria complement finite element 
treatments of stability. 

In the notation of Glasser et al. [13], localized ideal instabilities occur if 

DI > 0 (31) 

where 

D,-E+F+H--114, 

and localized resistive instabilities, if 

Dx > 0 (32) 

where 

D,=E+F+ Hz; 

Ed$&&&)(fl-ff 1 ’ 
F ~ a,~=p’~ d@ B2 

---z-- 4 [f -pPp F-spFp- f 
d@ X2 

R2g2 (f & & 2 )I 3 

H = 275P’ l 
4 if 

d@ 
iI 

d@ B2 
mQOIvY’ - B.V@IVy12 0 

& B2), 

J/‘= do- 
f B*V@’ 

q = Rg d@ l 
2rr f ij-Y-@jy: 

and primes denote derivatives with respect to the poloidal flux Y. 
The flux surface contour integrals in these expressions are evaluated as part of the 

mapping calculation [IO] mentioned earlier in Section III. There we find it convenient 
for the purpose of contouring to introduce the special coordinate system in which 
surfaces of constant r are concentric circular toruses, and 8 is a polar angle. Then 

aY B.V@=-(- a!P 
27rrX aX 

cos e - - az (33) 

and we evaluate the integrals as ordinary differential equations in 8. The quantities 
V’ and q must be differentiated; cubic spline interpolation is adequate in most cases. 
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VII. CODE VALIDATION 

An essential part of any code construction is the testing to determine its internal 
consistency and the accuracy with which it can represent a given set of physical condi- 
tions. This type of study is an ongoing process. We comment on two specific studies 
which have been done that give us some confidence in the efficacy of the code. 

A. Calculation of an Analytic Equilibrium 

There are very few useful toroidal equilibria for which exact analytic solutions can 
be obtained. Those that do exist have sharp discontinuities in the current distribution. 
Thus, they provide a severe test for a numerical program. 

A useful model was found by Solov’ev [6]: 

y+Tfq!! [X’Z’ $. ; (X2 _ R2)2] 

with p’ = dp(Y)/dY a constant inside the plasma region and g(Y) of Eq. (4) constant. 
This has been studied using the code formulation described in Section IV to investigate 
the adequacy of the fixed-boundary formalism. For a typical case with p’ = - I /7r2, 
OL = I, R = 2, and the plasma boundary specified by setting Y = 1, calculated on a 
65 x 65 mesh using a convergence test such that cb of Eq. (18) is lo-“, the maximum 
difference in the plasma region between the calculated and analytic values of Y, 
normalized to the maximum current, is 10-4. We can conclude that the error associated 
with the use of a difference form for the differential operator is at least this 
small. 

B. Shafranov Shift 

A major concern in the calculation of free-boundary equilibria is that the magnetic 
axis find its proper location. The measurement of the shift of the centers of the magne- 
tic surfaces with respect to this axis in a tokamak provides a sensitive test of this. For 
a low-beta, large aspect ratio, nearly circular tokamak, the shift is given by [2] 

(35) 

where we have used the coordinates and notation employed in Sec. III. Comparison 
of the calculated values of d with those obtained from Eq. (35) is given in Fig. 3 for 
a typical PLT (Princeton Large Torus) equilibrium. The agreement is remarkably 
good. On the other hand, similar calculations for very high-beta configurations or 
systems with strongly noncircular cross sections show larger discrepancies. These 
are largely due to the violation of the assumptions used in the derivation of 
Eq. (35). 
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FIG. 3. Comparison of analytic and numerical calculations of the Shafranov shift for the 
PLT equilibrium of Fig. 4. 

VIII. APPLICATIONS 

We give here a few typical results obtained from the code. These calculations were 
made for specific configurations that have been built or are being considered. 

A. The Princeton Large Torus (PLT) 

The calculation of equilibrium configurations for the PLT is a good illustration of 
the use of the basic code when the position of the operative limiter and p(Y) and 
g(Y) are specified. We use the exact poloidal field coil configuration of the device, and 
the profiles of Eqs. (14) and (15) forp and g with the parameters inferred from Thomp- 
son scattering measurements of the density and temperatures together with the total 
current and the value of q at the axis. Flux contours corresponding to a typical 
Ohmically heated discharge are shown in Fig. 4 for a case where /3, = 0.23 with q 
varying from I .OS at the magnetic axis to 5.3 at the limiter. Evaluation of the localized 
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stability functions D, and D, as well as studies of global modes with the PEST code 
[IO] indicates that this equilibrium should be stable with respect to ideal MHD modes. 
Detailed comparisons of the numerical results with analytic calculations [I, 21 for 
this case have been carried out as part of a program to design a sensing system to 
control the positioning of the plasma column during experimental operation by adjust- 
ing the currents in the vertical field coils [31]. 

MAJOR RADIUS POSITION (meters) 

FIG. 4. A typical PLT equilibrium with &, = 0.23 and 1.05 < q < 5.3. The solid curve marks 
the position of the vacuum vessel. The pluses and minuses denote ths poloidal field coils. 

Similar studies, using the formalism of Sec. III to investigate the effect of rapid 
plasma heating on equilibrium and stability, have been made for the Princeton Toroidal 
Fusion Test Reactor (TFTR). The discovery that ballooning instabilities are not 
localized near a magnetic surface was made using these equilibria [32]. 

B. The Princeton Divertor Experiment (PDX) 

The main application of the code to configurations where the plasma surface is 
determined by a magnetic separatrix has been in the design of the PDX device. A 
major problem in the design has been to insure that the plasma can be formed in a 
small region and heated to an interesting plasma regime such that the field lines inside 
the separatrix are kept away from any material wall for the duration of the experiment. 
Studies such as the one shown in Fig. 5 have made significant impact on the design 
of the poloidal field coil configuration in the device. Figure 5a shows the shapes of the 
magnetic surfaces early in the discharge when the plasma is cold; Fig. 5b describes 
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FIG. 5. Evolution of the flux surfaces as the current evolves in a PDX discharge; 01 = ,6 = 1 
in Eqs. (14) and (15). (a) Low current, Z = 100 kA, configuration early in the ignition. (b) Medium 
current, 2 = 250 kA, during the build up. (c) High current, Z = 500 kA, steady-state equilibrium. 
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FIG. 6. Typical PDX equilibria, showing that the plasma can be attached to (a) the inside divertor 
coils or (b) the outside divertor coils. Here OL = p = 2. 
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the configuration while the plasma is being heated; and Fig. 5c represents the system 
during the high-current, quasi-steady-state period. Here we have used a sequence 
with similar profiles of pressure p(U) and toroidal field g(Y), scaling them to obtain 
increasing total pressure and current. At the same time the currents in the poloidal 
field coils were increased together, maintaining constant ratios amongst the currents 
in the various coils. This study contributed significantly to the PDX design studies by 
showing that elaborate timing to control the currents in each separate coil is not 
needed. 

It is possible to use the PDX device to investigate the effect of the shape of the 
plasma column on the behavior of the plasma. Indeed, an early set of experiments will 
consist of using different magnitudes of the currents in the poloidal-field coils such 
that the divertor is tightly tied to the inner set of coils, the outer ones, or to both. The 
equilibrium results shown in Fig. 6 demonstrate that this can be done. Evaluation of D, 
and DR shows that the system is stable with respect to localized criteria for the first 
two cases. It is interesting that “outside D’s” like that of Fig. 6b can be found that 
have favorable D, and D, . Studies of the stability properties of these equilibria with 
respect to axisymmetric modes have been reported [33]. 

C. High-p D-Shaped Tokamaks 

The equilibrium codes described here have been used extensively for the conceptual 
design of toroidal devices with noncircular cross section plasmas. Here we give an 
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FIG. 7. FIG. 7. A typical D-shaped tokamak cross section used for studies of flux-conserving equilibria. A typical D-shaped tokamak cross section used for studies of flux-conserving equilibria. 
This corresponds to p0 = 0.6 x lo0 in Fig. 8. This corresponds to p0 = 0.6 x lo0 in Fig. 8. 
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example of a study of D-shaped plasma configurations, which could be operated in 
PDX size devices, where the toroidal field strength BT is 25 kG at R = 1.5 m. 

The numerical results with flux conserving constraints [5] are shown in Figs. 7 and 
8. This sequence was obtained by increasing the parameterp, in Eq. (14) thus keeping 
the pressure profile the same. Here the pressure parameter 01 in Eq. (14) is 1.2, the 
external vacuum field moment parameters of Eq. (12) are B, = 1.0, B, = -0.12, 
B,, = -0.04, and the safety factor q is 1.2 at the magnetic axis and 3.5 at the plasma- 
vacuum interface. The plasma major radius is kept at X = I .5 m by multiplying the 
vacuum poloidal equilibrium field by a constant factor. This permits a slight change in 
the plasma cross section during the sequence of equilibria described by Fig. 8. We see 
that, as pointed out recently [5, 221, equilibria can be found with /I N 20 % with 
moderate increase in plasma poloidal beta ,f3, . The required field is increased nearly 
proportionally to the plasma pressure at higher /I, , as is the case in simple circular 
cross section plasmas [l, 21. 

We can determine from these calculations the changes in the inductive poloidal 
flux (volt set) which must be provided during modifications of the plasma. For 

FIG. 8. Equilibrium parameters for the flux-conserving tokamak sequence containing the 
equilibrium of Fig. 7. Here fi = 2<p>/&P, /I* = 2(p8>‘/a/p&ts, and BD is the dipole field. 
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example, a significant poloidal flux is produced by the increase of the externally 
imposed vertical field needed to center the plasma. Thus, if flux conservation ade- 
quately describes plasma properties during the heating process, the flux due to the 
ohmic heating coils must be reduced in order to keep the total poloidal flux at the 
plasma boundary constant. Otherwise, considerable surface eddy currents would be 
excited during the heating process. These results suggest that a careful study of the 
poloidal field coil system should be carried out, including its impedance. 

D. Asymmetric Cross Sections in PDX 

The plasma volume in the PDX device could be made much larger if the poloidal 
field coils were arranged to eliminate one divertor coil. A study of the equilibrium 
and stability properties, with special emphasis on the control of axisymmetric insta- 
bilities, is most essential. Such an equilibrium is illustrated in Fig. 9. 
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FIG. 9. A typical equilibrium, asymmetric in Z, that could be contained in the PDX device. 
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IX. DISCUSSION 

Accurate and efficient numerical codes for the determination of magnetohydro- 
dynamic equilibria, where the prescription of the boundary conditions and plasma 
parameters accurately represents the actual device, are necessary for the design of the 
large, expensive experimental devices needed to make progress in fusion research. 
Furthermore, the results of a calculation must be in a form that is amenable to 
physical interpretation as well as suitable for further study utilizing stability and 
transport codes. In this paper we have described the formulation of such a code 
that is readily accessible. It has been implemented on the United States Department of 
Energy, Office of Fusion Energy, Computer network as part of a complete stability 
package [lo]. Here we have presented the algorithm used to solve the standard 
equilibrium problem where p(Y), g(Y), and the currents in the external coils are pre- 
scribed. We then showed how the code is changed to treat the case with p(Y) and 
q(Y) specified. Modifications to handle problems with a fixed plasma surface or 
equilibria that are not symmetric in Z were then given. We have applied the code 
to two known problems which show that the code can treat both fixed and free- 
boundary problems with some reliability. Even so, more work is necessary to investi- 
gate the quantitative dependence of the results on the error limits built into the code 
and on the mesh size. Several applications are given here which show that the code 
has already impacted on the design of experimental devices in the magnetic fusion 
energy program. It will be used in the data reduction and analysis for the PDX and 
TFTR devices where the Shafranov shift and noncircularity of the magnetic surfaces 
can be large enough to complicate the interpretation of the diagnostics. 
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